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1−11  Rotation Detailed, Rolling, and Angular Momentum 

Note: This detail on rotation is needed for AP Physics C: physical science majors, calculus based. 

Center of Mass: Objects rotate around a central axis and around a center of mass.  It is therefore important to be able to 
locate the center of mass.  The center of mass is each for shapes like squares, rectangles, circles, spheres, or equilateral 
triangles.  It is in the middle.  The following equation will find the center of mass of a system of point masses or for a system 
of geometric shapes (those just mentioned, that you can find the center of by inspection) cm m m= ∑ ∑r r .  Unusual 

shapes can be found experimentally by hanging the object from two or more positions, drawing vertical lines from the point 
of attachment of the string, and looking for an intersection.  Or integral calculus can be used.  For this course these last two 
methods will not be discussed. 

Example 11-1: Center of Mass 
Find the center of mass for the object in Fig 11.1a.  It is a thin flat object composed of a 
rectangle (2m by 4m in length, mass 5 kg) and a square (2m long sides, mass 3 kg).  Set up 
a coordinate axis system.  For convenience place the coordinate axis at one corner of the 
object and divide the object into a rectangle and a square, as shown in Fig 11.1b.  Find the 
center of mass the rectangle, relative to the coordinate axis, by inspection, 1 2x y= =, .  
Find the center of mass the rectangle, relative to the coordinate axis, by inspection, 

3 1x y= =, .  Now you can pretend that the rectangle and square are point masses at 
these locations.  The remainder of the problem is the method for solving for point 
masses in two dimensions.  You must work in each dimension separately. 
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The center of mass is located at 1.75 1.63cm m m= +r i j  

 
 
 
 
 
 
 
 
 
 

Rotation: Since every point on a rotating object experiences a different tangential velocity displacement, velocity, and 
acceleration cannot be expressed in terms of meters.  A particle on the outside edge of a rotating object covers a greater 
distance in the same time interval than a particle closer to the center.  The only quantity that both points share in any given 
time interval is the angle through which they move, as shown to the right.  In rotation we have to work in radians instead of 
degrees.  This means that for every variable in linear (translational) motion there is a corresponding variable for rotation.  
And every equation in linear motion has a rotational counterpart.  Displacement  x  is replaced by radians  θ  (radians).  
Velocity  v  is replaced by angular velocity  ω   (radians per second).  Acceleration  a  is replaced by angular acceleration  α  
(radians per second squared)  The following three equations form a bridge between linear motion and rotation and should be 
memorized. x rθ=  v rω=  a rα= .  The chart below, and on the following pages, compares 
rotation to linear motion.  There is an analogous quantity and an analogous equation for rotation that parallels those learned 
in linear translational motion.  Keep the three equations listed above in mind and become familiar with the new quantities. 
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 Angular Linear 
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Kinematic 
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acceleration directed along a radial (spoke) line.  
It is directed toward the center. 

2

c
va
r

=  

Inertia Moment of Inertia: Depends on mass and 
distribution and thus varies for each object 

2 2I r dm mr= = ∑∫  

Since these vary from object to object they are 
usually given.  The three shown here are 
commonly used.  The first one is the common 
shape for pulley, which are the most used. 
Cylinder: 21

2
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Cylindrical hoop: 2I MR=  
Sphere: 22
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Force and 
Torque 

Torque: Unbalance torques cause rotation. 

r Fτ = ×  

net Iτ τ α∑ = =  

Force: Unbalanced forces cause translation. 
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 Angular Linear 
Work W dτ θ= ∫  
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Vector Product and Torque: Torque is a cross product of vectors.  The magnitude of a cross product is the area of 
the parallelogram formed by the contributing vectors.  The direction of a cross product vector is determined by using 
the right hand rule.  So the direction of torque is out of the page for counterclockwise rotation, and into the page for 
clockwise rotations. 

Translation vs. Rotation:  Hit an object with a force directed into or out of the center of mass and it will translate 
(linear motion).  Hit an object with a force perpendicular to a radial line extending from the center of mass and at the very 
edge of the object, and the object will rotate.  Hit and object with a force between the center of mass and the edge and it will 
translate and rotate. 
(Note: Planets and satellites follow circular motion, as they are not attached.  Inner planets move faster as they are closer to 
the sun and must have larger tangential velocities.  They also travel a shorter circumference.  Thus they have shorter periods.) 

Angular momentum: Masses that experience linear motion (translation) have velocity and thus have linear momentum.  
Rotating masses have angular velocity and thus have angular momentum.  While linear momentum depends on mass and 
velocity, angular momentum depends on mass, mass distribution, and angular velocity.  Think about it.  In rotating objects 
the points of mass farther from the center are moving faster and thus have higher instantaneous momentum values than those 
closer to the center.  Lots of mass, far from the center of mass, means higher angular momentum than the same mass, near the 
center of mass. 

Angular momentum is conserved.  The radius gets smaller, but angular velocity increases (vice versa as the skater 
moves arms outward).  A galaxy, solar system, star, or planet forms from a larger cloud of dust.  As the cloud is pulled 
together by gravity its radius shrinks.  So the angular velocity must increase.  These objects all begin to spin faster.  That is 
why we have day and night. 
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Example 11-2: Compound Bodies and Pulleys with Mass 
A compound body consisting of, mA = 6.0 kg,  mB = 8.0 kg,  Mpulley = 1 kg,  
Rpulley = 0.10 m, is shown in Fig. 11.1a. 

What is the acceleration of the system? 
There are three masses, so there are three FBD’s, shown in Fig 11.2b.  
Make note of the interesting new FBD for a pulley.  Gravity acts through 
the center and down, as usual.  The normal force is created by the support 
pushing the pulley away from the table, and it follows the direction of the 
support through the center of the pulley.  The tensions are tangent to the 
pulley.  These tensions are a distance  R  (radius of pulley) from the 
center and they are perpendicular to the  R.  This provides the torque 
that rotates the pulley.  Also note that there are two tensions.  When we 
work with real pulleys that have mass the rope connecting the masses 
has different tensions in every separate segment. 
Set up sum of force and sum of torque equations for relevant masses.  As 
before use the direction of motion to assign positives and negatives.  The 
direction of motion is to the right, clockwise, and then down. 

A AF T∑ =  cw ccwτ τ τ∑ = −  B g BF F T∑ = −  

A Am a T=  B AI R T R Tα = ⋅ − ⋅  B B Bm a m g T= −  

A AT m a=  B A
aI R T R T
R
= ⋅ − ⋅  B B BT m g m a= −  

Combine the three equations above to get  

( ) ( )B B A
aI R m g m a R m a
R
= − −   Substitute in the moment of inertia of a cylindrical disk (pulley) 21

2
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( ) ( )21
2 B B A
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⎛ ⎞ = − −⎜ ⎟
⎝ ⎠

 Cancel out the pulleys radius, group all expression with  a,  and simplify. 
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This looks familiar.  If we did the problem the old way, with a massless pulley, we would look at it as linear, like Fig 11.2c 
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This is identical except for the expression for half the pulley’s mass.  Can we just do all pulley problems the old way and just 
add a  1

2
M   to all the regular masses in the denominator.  It seems to work, but you might loose points for not showing work.  

And the  1
2

M   only works with pulleys that have a moment of inertia of  21
2

I MR= .  If it were a spherical pulley, would we 

add  2
5

M   to the denominator, since its moment of inertia is  22
5

I MR= .  Verify it on your own and see. 

Fig 11.2c shows the problem sketched linear.  Any forces that are perpendicular to the direction of motion were removed 
from this sketch.  Vectors pointing in the direction of motion are noted with positive signs and those opposing motion are 
negative.  It is apparent that tension cancels as before.  However, unlike previous work in forces the pulley is not erased as it 
now has mass.  It must be accounted for.  Is there a shortcut method using this linear sketch that would show adequate 
supporting work? 
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Example 11-3: Rolling Down an Incline 
A spherical mass rolls  2 m  down an incline shown in Fig 
11.3a.  The FBD for the sphere is shown in Fig 11.3b.  In 
figure 11.3c the  gravity and normal force vectors have been 
summed and the component of force down the slope is shown.  
Fgsinθ pulls the sphere down the incline in the usual manner.  
However, the friction force vector is a distance  R from the 
center of the sphere.  These two vectors are perpendicular.  
This creates an unbalanced torque on the sphere, which causes 
it to rotate.  The combined motion of rotating and moving 
down the slope is rolling. 

What is the kinetic energy of the sphere at the bottom of 
the incline?  The sphere is translating and rotating at the same 
time.  The total kinetic energy is the addition of the 
translational and rotational kinetic energies. 

total translation rotationK K K= +  

2 21 1
2 2totalK Mv Iω= +  

It is also equal to the potential energy that converted in kinetic 
energy.  Given the quantities in the problem, this is easiest to solve 

totalK mgh=  ( )( )( )3 0 9 8 2 0 58 8totalK J= =. . . . . 

How fast is the sphere going at the bottom of the incline? 

Now the first kinetic energy equation has relevance,  2 21 1
2 2totalK Mv Iω= + .  Combine this with the moment of inertia 

equation of a sphere  22
5

MR ,  and the equation  
v
R

ω =   which converts angular values into linear values. 
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2 10totalK Mv Mv= +  27

10totalK Mv=  

Rearrange for velocity, plug in values, and solve. 
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 Another expression can be derive here also 
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What is the linear acceleration of the sphere down the inline? 

The length down the ramp is  
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