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3−21  Ampère’s Law 

Note: Ampère’s Law is needed for AP Physics C: physical science majors, calculus based. 

Ampère’s Law and The Magnetic Field Around a Current Carrying Wire (Case 1 revisited) 
Previously we learned that a current carrying wire generates a magnetic field that circles the wire and varies proportional with 
the distance from the wire.  If we integrate along the path of this circular field, by summing the magnetic field over very 

small distance it is found to be  0B d Iµ⋅ =∫ .  The permeability of free space to the magnetic field is  

7
0 4 10 T m Aµ π −= × ⋅ . 

It is useful for calculating the magnetic field around current carrying configurations that have a high degree of symmetry. 

Example 21-1: Magnetic Field Around a Current Carrying Wire. 
Solve for the magnetic field a distance  r  from a current carrying wire, in Fig 21. 

Use Ampère’s Law,  0B d Iµ⋅ =∫ .  As it is highly symmetrical  B  can be removed 

from the integral,  0B d Iµ=∫ .  The circumference of a circle is known, so integration 

is not necessary,  ( ) 02B r Iπ µ= .  Rearrange to solve for  B,  0
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= , and we 

arrive at the algebraic version of the equation, that was given previously. 

Solenoid: A solenoid is a wire wound in the form of a helix, as shown in fig 21.2 

Magnetic Field of a Solenoid: A The magnetic field in a solenoid is strongest down the middle.  The direction follows 
the right hand rule.  The magnetic field is weak around the outside, and in many problems it may say that the field is 
negligible on the outside.  The magnitude of the field is  0SB nIµ=  

n  is the number of turns,  N,  in the solenoid per unit of length,  . 
Nn = . 

A solenoid is a tightly wound coil of wire 
where each successive coil touches the next 
coil.  This means that the diameter of the wire 
making up the solenoid is equal to the length 

of a single turn,  
1n

diameter of wire
= ,  

as shown in Fig 21.2. 

Magnetic Flux: The same principles and 
explanations apply to magnetic flux as they 
do the electric flux (see previous section on 

Gauss’s Law).  m dφ = ⋅∫B A .  This is a 

dot product.  The algebraic version is  

m BAφ θ= ⋅B A= cos .  Caution: remember that flux involves area.  When referencing areas angles are measured from 

a normal (line drawn perpendicular to the surface). 

Gauss’s Law of Magnetism: The net magnetic flux through any closed surface is always zero. 0d⋅ =∫ B A  
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Fig 21.1 

 of 10 turns = 10 wire dia. of 1 turn = wire dia.
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Fig 21.2 



Revised 8/29/06 76 © R H Jansen 

 


