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Unit 2  Fluids and Thermal Physics 
2−12  Fluid Mechanics 

Solids: Condensed matter with definite volume and shape.  High intermolecular forces create rigid structure.  Force can 
deform it. 

Liquids: Condensed matter and fluid with fairly definite volume, but takes the shape of its container.  Loose 
intermolecular forces. 

Gases: Fluid only.  Easily compressed, taking shape & volume of its container.  Particle speed interferes with 
intermolecular force. 

Fluids: Substance that can flow (gases and Liquids).  Outside forces cause, unconfined, fluids to flow. 

Pressure: Force applied over an area.  Fp
A

=   F is perpendicular to the surface (normal).  Pressure is a scalar quantity. 

Measured in Pascals.  1 Pa = 1 N/m2.  1 atm = 101325 Pa,  which simplifies to  51 1 10atm Pa= ×  

Density: The amount of matter occupying a certain amount of space.  m
V

ρ =   Measured in  kg/m3  (in chem.   g/cm3) 

The density of water is easy to memorize.  Water is the most common substance on earth, so chemists set its value at 1 g/cm3.  

Water is the reference standard by which all other densities are compared.  But, physics operates on a larger scale with 
different units.  

2

3 31.00 1000H O g cm kg mρ = =  

Pressure and Depth: Pressure increases with depth.  A column of fluid (air we breath or water 
in oceans) has weight and puts a force on the fluid below it, Fig 12.1.  The deeper one is (on the 
surface of earth for air, or at the bottom of the ocean for water) the greater the force and pressure.  The 
equation for pressure at depth is derived by combining the following four equations. 

Fp
A

= , due to fluid aboveF mg= , 
m
V

ρ = ,  and V hA=  p ghρ=  

which becomes 0p p ghρ= +   p0  is the pressure on the surface.  This could be caused by a piston 

in a closed tube, or by the atmospheric pressure for a fluid whose surface is exposed.  Example: a 
scuba diver, at a depth of 80 ft in saltwater, experiences a pressure of 

( ) ( )( )( )5 3 5
0 1 10 1.03 10 9.8 24.4 3.46 10 3.46p p gh Pa atmρ= + = × + × = × =   (3.5 × atmospheric pressure at sea 

level).  How does this translate to force?  Calculate the force on 1 square meter  p F A= ,  so  

( )( )5 23.46 10 1 34600F pA Pa m N= = × =  

Pascal’s Principle: Pressure applied to an enclosed fluid is transmitted, 
undiminished, to every point in the fluid and to the walls of the container.  
This explains the workings of hydraulic lifts, jacks, and brakes.  The pressure 
put in (input) at one end is equal to the pressure put out (output) at the other. 

input outputp p= .  Substitute  
Fp
A

=   on each side to get  i o

i o

F F
A A

= . 

A small input force on a small area creates a large output force on a large 
area.  Work done pushing the piston can also be analyzed. 

i oW W=   which is  i i o oF x F x=   and becomes  i
o i

o

xF F
x

=  

The input distance must be large to get a large output force, Fo. 
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Buoyancy: Things float because they are buoyed upward, which requires an upward net force on the object.  It is caused 

by the difference in pressure ( )bottom topp p p∆ = − between the bottom of the object and the top of the object. 

Fp
A

=   combined with  ( )bottom top bottom topp gh gh g h hρ ρ ρ∆ = − = −   results in  ( )bottom top
F g h h
A

ρ= −   which is  

( )bottom topF g h h Aρ= −  or buoyF Vgρ=   Remember this is the density of the fluid and the volume of the fluid 

displaced.  This is the equation for the weight of the fluid displaced. buoy
mF Vg Vg mg
V

ρ= = =   of the fluid. 

Archimedes’ Principle: A body immersed wholly or partially in a fluid is buoyed up by a force equal in magnitude to 
the weight of the volume of fluid it displaces. 
Buoyancy and Density: Density tells whether it will sink or float.  Fig 12.3 diagrams several masses in a fluid. 
 
 
 
 
 
 
 
 
Floats out of water Rising to Surface Neutral Buoyancy Sinking to Bottom Resting on Bottom 

B gF F=  B gF F>  B gF F=  B gF F<  B N gF F F+ =  

obj Fluidρ ρ<  obj Fluidρ ρ<  obj Fluidρ ρ=  obj Fluidρ ρ>  obj Fluidρ ρ>  

obj Fluid Displacedm m=  obj Fluid Displacedm m<  obj Fluid Displacedm m=  obj Fluid Displacedm m>  obj Fluid Displacedm m>  

obj Fluid DisplacedV V>  obj Fluid DisplacedV V=  obj Fluid DisplacedV V=  obj Fluid DisplacedV V=  obj Fluid DisplacedV V=  

 
Specific Gravity: ratio of the density of a substance (ρs) to the density of water (ρw).  . . s wsp gr ρ ρ=  

Example 1-1: Buoyancy 
A 2.0 kg cube, that is 10.0 cm in length on each side, is suspended by both a gray fluid and by a spring as  
shown in Fig 12.4a.  The spring constant is 100 N/m and the spring is stretched 0.15 m. 
What is the density of the fluid?  This is a balanced force problem.  The object is not moving.  Use the  
FBD in Fig 12.4b to sum the forces. 

S B gF F F F∑ = + −  0F∑ =  

S B gF F F+ =  Upward force spring and force buoyancy equals the downward force gravity. 

kx Vg mgρ+ =  

mg kx
Vg

ρ −
=  

( )( ) ( )( )
( ) ( )3 3

2 0 9 8 100 0 15
469

0 1 9 8
kg
m

ρ
−

= =
. . .

. .
 

 
Fluid Dynamics: The overall flow of a fluid can be described, but the motion of the individual molecules or atoms that 
compose the fluid cannot.  We use a theoretical model, known as an ideal fluid.   Ideal fluids have four characteristics. 
Steady Flow: Smooth flow, where all the particles of a fluid have the same velocity as they pass a given point.  The 
particle path is depicted by streamlines that never cross.  This requires low velocities, since high flow rate results in eddies, 
particularly near boundaries, which give rise to turbulence.  Relative velocity is shown by drawing faster flowing fluid 
streamlines closer together. 
Irrotational Flow: No net angular velocities in any portion of the fluid.  i.e., there is no possibility for eddies and turbulence. 
Nonviscous Flow: A nonviscous fluid flows freely without energy loss.  Viscosity is a fluid’s internal friction, and is 
neglected.   
Incompressible Flow: Fluid’s density is constant.  Gases are not incompressible, but sometimes they approximate 
incompressibility. 

m
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Equation of Continuity: If there is no loss of fluid in a closed tube the mass entering must equal the mass leaving 
the tube.  In Fig 12.5 a fluid flows through a tube that is narrow at first and 
then widens.  The volumes of the narrow and wide portions are:
 1 1 1V A x= ∆  2 2 2V A x= ∆  

Substitute  x v t∆ = ∆ : 1 1 1V A v t= ∆  2 2 2V A v t= ∆ . 

Volume relates to mass. 
m
V

ρ =  so m Vρ=  

Substituting  m Vρ∆ = ∆ : 1 1 1 1m A v tρ∆ = ∆  2 2 2 2m A v tρ∆ = ∆  

But, the two shaded sections of pipe were picked because they have equal 
volumes, one long and thin, the other short and wide.  So if the volumes are 
the same, then the mass of fluid in the first section equals the mass of fluid 
in the second section. 

1 2m m∆ = ∆   and thus  1 1 1 2 2 2A v t A v tρ ρ∆ = ∆ .  Time cancels, as does 
density.  In ideal fluids density is assumed to be uniform. 

Flow Rate Equation: 1 1 2 2A v A v=   Flow velocity is greater where the cross sectional area is smaller.  1
2 1

2

Av v
A

=  

Now Analyze the Work done by external forces at ends of the tube in the figure above right. 
F1  is positive (matches motion), while  F2 is negative (opposite motion). 1 1 2 2W F x F x= ∆ − ∆  

Substitute  
Fp
A

=   written as  F pA=  ,  along with  x v t∆ = ∆  1 1 1 2 2 2W p A v t p A v t= ∆ − ∆  

Using the Flow Rate Equation just derived,  1 1 2 2A v A v=   and we simplify to ( )1 1 1 2W A v t p p= ∆ −  

Then use the mass relationship from above,  1 1 1 1m A v tρ∆ = ∆  ( )1 2
mW p p
ρ
∆

= −  

Work is a change in energy  W K U= ∆ + ∆  ( )1 2
m p p K U
ρ
∆

− = ∆ + ∆  

Substitute the formulas for  ∆K  and  ∆U

 
2 2

1 2 2 1 2 1
1 1
2 2

m mp p mv mv mgy mgy
ρ ρ
∆ ∆

− = ∆ − ∆ + ∆ − ∆  

Cancel mass and multiply all by density 
2 2

1 2 2 1 2 1
1 1
2 2

p p v v gy gyρ ρ ρ ρ− = − + −  

Rearrange separating 1’s and 2’s 
2 2

1 1 1 2 2 2
1 1
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  

Bernoulli’s Equation: 21
2

p gy v constantρ ρ+ + =  

Applying Bernoulli’s Equation to various situations. 

• Horizontal flow ( )1 2y y= : 21
2

p v constantρ+ =  Indicates that pressure decreases if fluids speed increases or 

vice versa. 
• Looking at both Bernoulli’s and the Continuity Equation:  Reduce pipe cross section, then velocity goes up, and pressure 

down. 
• Partially responsible for lift:  Air over the curved surface of a wing goes faster, with lower pressure.  So the slow high 

pressure air on the bottom of the wing pushes upward. 

• Fluids at rest ( )2 1 0v v= = : ( )2 1 1 2p p g y yρ− = −   which is the pressure depth relationship. 
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Example 1-2: Buoyancy 
A tube, shown in Fig 12.6a, that has an opening at the top and a hole in the side is 
continuously filled with water.  It is filled so that the water level remains constant, 
even though water is leaking from the hole in the side. 

What is the velocity of the water coming out of the hole in the side? 

Use Bernoulli’s Law 21
2

p gy v constantρ ρ+ + =  

Pick two convenient locations: The surface of the water (point 1) and the hole in the 

side (point 2). The fluid flows from the surface  2
11 1

1
2

p gy v constantρ ρ+ + =   to 

the hole  2
22 2

1
2

p gy v constantρ ρ+ + = . 

It is the same fluid, so the constant at both points must be the same.  Therefore,  
2 2
1 21 1 2 2

1 1
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  

The tube is open to the atmosphere at both ends, so  1 2p p=  

2 2
1 21 2

1 1
2 2

gy v gy vρ ρ ρ ρ+ = +  

Since the level of the water is maintained at a constant point the velocity at point 1 is zero. 
2

21 2
1
2

gy gy v= +  Which simplifies to  ( )1 22v g y y= −   or  2v g y= ∆  

What if we look at this differently? 
Suppose we follow a single water molecule from point 1 to point 2.  Pretend it follows the path (in 
an energy problem path doesn’t matter, so any path will give the same answer) diagramed in  

Fig. 12.6b.  What would its velocity be?  Height is turning into velocity.  21
2

mgh mv=

 2v gh=   or  2v g h= ∆ .  This looks familiar!  Notice that 

mass cancelled, so it does not matter if it is one molecule or a stream of molecules.  Funny how 
Physics ties together and different approaches to problems can yield the same answers. 
Notice that the water leaving the opening is a horizontally launched projectile. 

21
2

y gt=   and  0xx v t=   Just be careful this  y  is different from the  y  used in Bernoulli’s 

equation.  Note the labels on the right side of Fig 12.6a 
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