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1−5  Applications of Force 

Strategy for Force Problems 
1. Draw FBD. 
2. Decide direction of motion.  Considered this the positive direction.  If the object does not move, ask which direction it 

would move if it were free to do so, and set this as the positive direction. 
3. Which direction matters, the  x  or the  y-direction?  What is it doing in the direction that matter? 
4. Construct  F∑   equations in the relevant direction, by looking at the FBD.  Any force vectors or components of force 

vectors pointing in the direction of motion are positive while any vectors or components opposing motion are negative.   
5. Substitute known equation,  F ma∑ = ,  gF mg= ,  from the table on page 6, into the sum of force equation. 

6. Plug in values and solve.  All values including 9.8 are positive since the plusses and minuses have already been decided. 

Example 5-1: Static Force Problems, and Force Triangles 
In beginning physics many force problems contain a force triangle. 
A mass is suspended by two strings from the ceiling, as shown in Fig 5.1a.  
Fig. 5.1b is the FBD.  In Fig 5.1c the tensions are separated into  x  and  y  
components.  Sum the forces in the  x  and    y-directions separately.  The 
sum of force will be equal to zero. 

2 1x x xF T T∑ = −  1 2x xT T=  

1 2y x y gF T T F∑ = + −  1 2x y gT T F+ =  

Under the right circumstances the three force vectors form a right triangle when added tip to tail.  
Note the 30o and 60o angles above.  The forces complete the 30-60-90 triangle shown in  
Fig 5.1d.  The sum of force is zero.  Tensions can be calculated using SOH CAH TOA and 
Pythagorean Theorem. 

1 cos30o
gT F= 2 sin 30o

gT F=  or 1 sin 60o
gT F= 2 cos 60o

gT F=  

 

Example 5-2: Lawn Mower 
An old fashioned lawnmower is pushed with 90N at a 45o angle against a horizontal retarding force.  
Fig 5.2a is the FBD, while Figure 5.2b is a diagram of horizontal and vertical component vectors 
Solve for the Retarding Force 

.x x retF F F∑ = −  .0 x retF F= −  . 90 cos45 63.6o
ret xF F N N= = =  

Solve for the Normal Force 

y y gF F N F∑ = − + −  

y y gN F F F= ∑ + +  ( ) ( )( )20 90 sin 45 16 9.8 220oN N kg m s N⎡ ⎤= + + =⎣ ⎦  

Solve for F to accelerate from rest to 1.5 m/s in 2.5 s 

ox x xv v a t= +  21.5 0 0.6
2.5

ox x
x

v v
a m s

t
− −

= = =  ( )( )216 0.6 9.6x xF ma kg m s N∑ = = =  

You need this force to accelerate, but you still need to overcome the retarding force. 

.x x retF F F∑ = −  . 9.6 63.6 73.2x x retF F F N N N= ∑ + = + =  
But you aren’t pushing in the  x-direction.  You need the push at 45o to generate 73.2 N in the  x-
direction. 

cos 45o
xF F=  73.2 104

cos 45 0.707
x

o

F NF N= = =  

Apparent Weight: When you ride in an elevator upward you will feel heavier when the elevator accelerates and lighter 
as it slows to a stop.  When riding downward you will feel lighter when it accelerates and heavier when it stops.  When you 
ride a roller coaster you experience the same sensations when moving up and down.  On “Superman the Ride” you can 
actually feel weightless.  Astronauts and pilots experience these same sensations when moving away or toward the center of 
the earth (or the moon).  Astronauts also feel weightlessness as well.  This effect is not limited to the vertical or  y direction.  
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When you “step on it” in a car you feel yourself pressed into the seat, and when you panic stop you feel yourself thrown 
forward.  These sensations have the same characteristics as gravity or weight.  Up to now we have analyzed the motion of the 
car, the plane, the rocket, etc. using straight forward force and kinematics.  With apparent weight we are dealing with a false 
force that the passenger feels.  The effect is really created by the passenger’s inertia.  When you “step on it” you don’t sink 
into the car seat.  You actually follow inertia and stay at rest, while the car hits you from behind.  The real acting forces are 
the opposite of what our brain thinks.  To analyze this feeling of force for a passenger we need apparent weight.  Apparent 
weight is the weight that would show on a bathroom scale if you were between you and the surface causing the force.  
Contact with any surfaces is a normal force and bathroom scales measure normal force.  So weight apparent is also  FN. 

g apparent
F mg ma= ±  This equation adds the acceleration of a passenger’s vehicle to the real weight. 

x direction: g x xapparent x
F mg ma= ± , but with no g in the x direction g xapparent x

F ma= ±  

Positive: accelerating, you feel heavier.  Negative: decelerating, you feel lighter. 
y direction: g y yapparent y

F mg ma= ± , so acceleration adds / subtracts from the real / actual weight. 

Positive: moving away from the center of gravity (up or away from Earth).  Negative: moving toward the center of 
gravity. 

Why do you feel weightless on “Superman the Ride”?  Because, the acceleration is downward and matches gravity. 
( ) ( ) 29.8 9.8 0g y yapparent y

F mg ma m m m s= ± = − =  

g’s: The acceleration of gravity can also be expressed in g’s.  21 9.8g m s=   This is commonly used in flight 

terminology. 

Example 5-3: Compound Bodies, One Dimension 
These problems have two or more masses connected by a string or pressed against each other. 
In Fig 5.3a a force  F  presses against block  1  which presses with a normal force against block  2  
which then presses with a normal force on block  3. 

If all the blocks are the same mass what is the acceleration of the blocks?  Simply treat all the masses as one larger block, 
and remember to use the sum of force to find acceleration. 

systemF F∑ =  systemm a F=  ( )1 2 3m m m a F+ + =  
( )1 2 3

Fa
m m m

=
+ +

 

How much force  F  is acting on each block?  The force will distribute proportionally based on mass.  If the blocks are of 

equal mass then the force on each of the three blocks will be one third. 1 3
FF =  2 3

FF =  3 3
FF =  

If the blocks do not have the same mass then you must distribute the force using the mass ratio. 

How much force is acting at the boundary between the blocks?  This force is a normal force as it is created by surface 
contact.  Block  1  requires one third of  F  to move.  So two thirds of  F  remain to push blocks  3  and  4.  The force at the 
boundary between blocks  1  and  2  is two thirds  F, and this is the force needed to push the blocks behind the boundary.  
The last block  C  only requires one third of force  F  and thus the force at the boundary between blocks  B  
and  C  is one third  F.  This may make more sense when examined vertically.  If the same blocks are stacked 
on a table one could imagine that they are gymnasts standing on each other’s shoulders.  How much of the 
total force  F  is felt on the bottom gymnasts feet?  All of the force.  How much is at the boundary?  The 
boundary can be analyzed from either surface of contact.  If we look at the bottom gymnasts shoulders, he 
must push up with  2/3 F  to hold  2/3 m.  The middle gymnasts feet must support his own weight and that of 
the gymnast above, so his feet must push with  2/3 F.  No matter how you look at the boundary you arrive at 
the same answer.  The boundary between the middle and top gymnast is  1/3 F, as the middle gymnast 
shoulder and top gymnasts feet only need to support the top gymnasts  1/3 m. 

The problem is exactly the same if the blocks are tied by strings and hanging from the ceiling.  Only now we solve for 
tension instead of force normal, and the gymnasts are hanging from a cliff.  If the top rope (top arm) in 
Fig 5.3c has a tension of  F,  what is the tension between blocks  1  and  2?  2/3 F.  The top gymnast 
lower arm and the middle gymnasts upper arm both have to support  2/3 m.  How much tension is in the 
rope between blocks  2  and  3?  1/3 F 
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Compound Bodies in Two Dimensions: These problems have two or more masses 
connected by a strings and involve pulleys.  Pulleys are devices that change the direction of 
force.  The pulleys in the following examples will be considered massless and frictionless, and 
as a result they do not change the magnitude of force.  As two dimensions are involved 
simultaneously the assignment of positive and negatives on the various forces can be tricky.  
The easiest method to achieve sign consistency throughout a complex problem is to identify the 
direction the masses are moving, or the direction they are most likely to move.  Set the 
direction of motion as positive, as shown in the top figure to the right.  Every vector in the 
direction of motion will be considered positive.  Those opposed to the direction of motion are 
negative.  If you are not sure what the direction of motion will be, take a guess.  If you calculate 
a negative value for acceleration, you were wrong, the masses actually moved in the direction 
opposite your prediction.  A very useful shortcut is to reorient the problem into one dimension.  Pulleys are devices that 
change the direction of force.  So pretend the pulley is not there, as shown in the figure at the bottom right. 

Example 5-4: Compound Body Moving in Two Dimensions 
Solve for acceleration: Fig 5.4a shows the scenario.  As there are two masses there are two 
FBD’s shown in Fig 5.4b.  Fig 5.4c is an informal sketch of connected boxes.  Use this sketch 
and the combined mass method to solve for overall acceleration.  Remember, when you use 
the combined method you must total all the masses for the sum of force.  Fg  and  FN  acting 
on mass  A  are perpendicular to motion.  They cancel each other.  Fig 5.4c shows that the 
tension in the rope also cancels.  It is the same rope so the value at both ends is the same and 
the direction of tension is opposite.  So tension cancels in the shortcut to find acceleration. 

AB g BF F∑ =  ( )A B Bm m a m g+ =  
( )

B

A B

m ga
m m

=
+

 

Solve for the tension in the rope: In order to solve for tension you need a formula with 
tension in it.  You must solve for one of the masses by itself.  Solve for either body.  On tests 
choose the easy one, this will usually be the hanging mass. 

A frAF T F∑ = −  or B gBF F T∑ = −  

A AT m a m gµ= +   B BT m g m a= −  

Plug the acceleration from part one into either equation above and you will get the same final answer. 

Example 5-5: Atwood Machine: Atwood created a device to artificially slow the 
acceleration of gravity.  In Fig 5.4a it doesn’t say which mass is greater.  I picked the two 
masses  B  and  C as the more massive side and used this to set the direction of motion. 
Solve for acceleration: The FBD’s for all blocks are shown in Fig 5.5b.  Use the 
combined mass method to solve for overall acceleration.  Remember, when you use the 
combined method you must total all the masses for the sum of force.  In addition it is easier 
if you treat blocks  B  and  C  as though they are one larger block having a single mass.  
Fig 5.5c is a sketch of the masses as a linear problem, with the left masses combined. 

ABC g BC g AF F F∑ = −  

( ) ( )A B C B C Am m m a m m g m g+ + = + −  ( )
( )

B C A

A B C

m m g m g
a

m m m
+ −

=
+ +

 

If asked for the tension in the rope connecting mass  A  and  B  you must sum the forces 
for any block connected to the rope.  A problem might only give information for one of 
the two blocks, or one of the blocks will be much simpler to solve.  Learn to identify the 
easy block.  If more than one mass is suspended by a rope, then add the masses suspended 
by the rope.  This is the case for blocks  B  and  C.  Both of the possible solutions are 
detailed, one using block  A  on the left, and the other using blocks  B  and  C  to the right. 

A gAF T F∑ = −  or BC gBCF F T∑ = −  

A gAT F F= ∑ +   gBC BCT F F= − ∑  

A AT m a m g= +   ( ) ( )B C B CT m m g m m a= + − +  

Plug in the acceleration from above to solve for  FT.  To solve for the tension in the rope between block  B  and  C,  just use 
the mass of block  C.  Refer to the right most FBD in Fig 5.5b. 

C gCF F T∑ = −  gC CT F F= − ∑  C CT m g m a= −  
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Force Gravity on Slopes: Motion on a slope is parallel to the slope.  Fg  is then at an 
angle to this motion.  Any vector at an angle to motion should be split into components 
parallel and perpendicular to the chosen orientation (direction of motion).  In this case  Fg  
should split into  Fg ||  and  Fg ⊥  to the slope.  Fg  is actually pulling the block into the slope 

cosg gF F θ⊥ =  and down the slope sing gF F θ= . 

But the block is not moving perpendicular to the slope, so the sum of forces in the 
perpendicular direction is zero.  If gravity is pulling the block into the slope then the slope 
must push back with an equal and opposite force.  Any force involving contact with a 
surface is call a Normal Force, N.  In slope problems cosgN F θ= .  

When a block moves on a flat surface the slope angle is 0o.  Plug 0o into 
the  N  equation and it reduces to gN F= .  This is an abbreviation for  

N  that works only on flat surfaces.  The component of gravity parallel 
to the slope sing gF F θ=  is then left over.  Fg ||  is the resultant 

when  Fg  and  N  are added by vector addition. This is the force of 
gravity that can accelerate objects down slopes. 

Example 5-6: Combined Bodies and Slopes 
Solve for acceleration:  This is just like Example 5-4, only this time block  A  is on a 
slope.  Just use the same problem solving approach and recognize that gravity is 
different on slopes.  Fig 5.7a diagrams the problem.  Fig 5.7b shows the FBD’s for the 
two masses.  Make a note of the orientation of the vectors for block  A.  Fig 5.6c depicts 
the problem as a linear problem.  As usual gravity is pulling block  B,  and as it is felt 
entirely in the  y direction, it is acting with full strength.  However, gravity is acting at an 
angle to the motion of block  A  on the slope.  We need the component of gravity acting 
in the direction of motion,  Fgsinθ,  in order to solve the problem.   

sinAB g B gAF F F θ∑ = −  

( ) sinA B B Am m a m g m g θ+ = −  
( )

sinB A

A B

m g m ga
m m

θ−
=

+
 

Solve for the tension in the rope: Solve for either body.  On tests choose the easy one, 
this will usually be the hanging mass. 

sinA gAF T F θ∑ = −  or B gBF F T∑ = −  

sinA AT m a m g θ= +   B BT m g m a= −  

Plug the acceleration from part one into either equation above and you will get the same final answer. 

Friction: Opposes motion and is always negative.  Motion is always parallel to a surface, so friction always acts parallel. 
Static Friction: Friction that will prevent an object from moving.  As long as the object is standing still the force of friction 
must be equal to the push, pull, component of gravity or other force that attempts to move the object. (If there is no force 
attempting to cause motion, then there can be no friction).  Oddly enough the maximum value for static friction is measured 
just as the object breaks loose and begins to move.  Static friction is the strongest friction since the surfaces have a stronger 
adherence when stationary. 
Kinetic Friction: Friction for moving objects.  Once an object begins to move breaking static frictions hold, then the friction 
is termed kinetic.  Kinetic friction is not as strong as static friction, but it still opposes motion. 

Coefficient of friction: µ  is a value of the adherence or strength of friction.  µk  for kinetic and  µs  for static. 

f Nµ=  so cosf mgµ θ=  On flat surfaces θ = 0o, f mgµ=  
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Example 5-7: Two Dimension Compound Body with Friction 
Solve for acceleration: This is a repeat of Example 5-4, only this time friction appears in 
the FBD for mass  A.  Friction opposes motion and is therefore negative. 

AB g B frAF F F∑ = −  ( )A B B Am m a m g m gµ+ = −  
( )
B A

A B

m g m ga
m m

µ−
=

+
 

Solve for the tension in the rope: Solve for either body.  On tests choose the easy one, this 
will usually be the hanging mass. 

A frAF T F∑ = −  or B gBF F T∑ = −  

A AT m a m gµ= +   B BT m g m a= −  

Plug the acceleration from part one into either equation above and you will get the same 
final answer. 

Example 5-8: A Complex Slope Problem 
Objects can move up or down a slope.  singF θ  is simply the component of gravity pulling on an object down the slope in a 

direction parallel to the slope.  In Fig 5.8a a man is pushing mass  B  up a slope.  In this case gravity is opposite the direction 
of motion, as is friction.  The FBD’s for both blocks are shown in Fig 5.8b, with the main difference being the presence of the 
true forces,  Fg  and  FN instead of  singF θ .  Remember,  Fg  and  FN  are summed to create  singF θ .  The direction of 
motion (positive direction) is up the slope. 

A gAF F T∑ = −  sinB gB BF F T F fθ∑ = + − −  

gA AT F F= −∑  sinB gB BT F F F fθ= ∑ − + +  

 singA A B gB BF F F F F fθ−∑ = ∑ − + +  

sin cosA A B B Bm g m a m a F m g m gθ µ θ− = − + +  

sin cosA B A B Bm a m a m g F m g m gθ µ θ+ = + − −  

( ) sin cosA B A B Bm m a m g F m g m gθ µ θ+ = + − −  

If constant velocity 0 sin cosA B Bm g F m g m gθ µ θ= + − −  

If accelerating  
sin cosA B B

A B

m g F m g m ga
m m

θ µ θ+ − −
=

+
 

An easier way to solve any compound body problem connected by a string is to stretch it out in a linear manner as shown in 
Fig 5.8c. 
 
 
The direction of motion is to the left, so all left arrows are positive, and all right arrows are negative.  The string attaching the 
two boxes is the same and the two equal and opposite tensions cancel each other out.  This allows you to solve for an overall 
Force Net in fewer steps.  The main difference here is that the mass in the sum of force substitution is the total mass of the 
whole problem. 

singA gB BF F F F fθ∑ = + − −  

( ) sin cosA B A B Bm m a m g F m g m gθ µ θ+ = + − − , which is identical to the sixth line in the longer version above. 

Constant velocity 0 sin cosA P B Bm g F m g m gθ µ θ= + − −  or accelerating sin cosA B B

A B

m g F m g m ga
m m

θ µ θ+ − −
=

+
 

However, this is not going to solve for the force of tension in the string.  You must select one of the masses and work with its 
FBD.  Block  A  obviously has the simpler of the FBD, so choose it. 

A gAF F T∑ = −  gA AT F F= −∑  A AT m g m a= −  

If you are lucky the blocks are standing still or moving at constant velocity, in which case  a = 0.  If not use the  a  from 
above. 
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