
Revised 8/29/06 7 © R H Jansen 

1−3  Motion in Two Dimensions 

Relative Velocity: Motion in two dimensions, both at constant velocity. A common example is that of a boat crossing a 
river. In figure 3.1, a boat leaves perpendicular to the shore with a velocity of  vB.  The rivers current,  vR,  carries it 
downstream a distance  y.  In figure 3.2 the 
boat aims at an angle of  θ  upstream in 
order to end up straight across. There is a 
triangle formed by the solid velocity 
vectors, and another formed by the dashed 
displacement vectors. These triangles are 
similar triangles. The resultant velocity of 
the boat will be a combination of the boats 
own velocity and current. This vector is 
labeled  Σv.  This is how fast the boat will 
appear to be moving as seen from a 
stationary observation point on shore. When 
calculating the time to cross the stream use 
the velocity vector and displacement vector 

that point in the same direction. In figure 3.1,  B
xv
t

= .  In figure 3.2,  
xv
t

∑ =  

Projectile Motion: Motion in one dimension involves acceleration, while the other is at constant velocity. 
• In the x-direction the velocity is constant, with no acceleration occurring in this dimension. 
• In the y-direction the acceleration of gravity slows upward motion and enhances downward motion. 

Vector Components in Projectile Motion:  The x-direction and the y-direction are independent of each other. 
 
 
 
 
 
 
 
 
 
Now  v0  is at an angle. 

Solve for  v0x: 0 0 cosxv v θ=  then use  v0x  in the kinematic equations to solve for  vx. 

Solve for  v0y: 0 0 sinyv v θ=  then use  v0y  in the falling body equations to solve for  vy. 

vx  and  vy  are component vectors. To find  v,  use Pythagorean Theorem 2 2
x yv v v= +  and arctangent 1tan y

x

v
v

θ −=  

The highest point in the flight: 0x xv v=   and  0yv = .  If the problem ended here these conditions would apply. 

Horizontal Launches 
The launch angle is  0oθ =  0 0 0 0cos cos0o

xv v v vθ= = =  0 0xv v=  

   0 0 0sin sin 0 0o
yv v vθ= = =  0 0yv =  

The above math is not really necessary. Inspection of the Fig 3.4 shows that  v0  is 
directed straight down the x-axis with no y-component vector visible at all. The end of the 
problem is similar to the problem depicted in Fig 3.3, above. 

Coordinate Axis System provides the necessary orientation to handle the following 
variables and their appropriate signs: launch angle, initial velocities in  x  &  y,  final 
velocities in  x  &  y,  final landing height, and final overall velocity. Orientation matters and thus the coordinate axis 
becomes a powerful tool, as depicted on the next page. 
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Initial Launch 
 
 
 
 
 
 
 
 
Fig 3.5 

During the problem 
(At the top vx = vox and vy = 0) 
 
 
 
 
 
 
  
Fig 3.6 

Final Landing 
 
 
 
 
 
 
 
 
Fig 3.7 
+ x Always 
 − y Lands lower than  y0 
y = 0 Lands same height as  y0 
+ y Lands higher than  y0 

Initial displacement 
 0 0x =   
 0 0y =  

Falling bodies: θ = ±90o 
 0 0 cos90 0o

xv v= =  
 

0 0 0sin 90o
yv v v= =  

Horizontal launch: θ = 0o 
 0 0 0cos 0o

xv v v= =  
 0 0 sin 0 0o

yv v= =  

1st quadrant launch: +θ 
 0 0 cosxv v θ=  will be + 
 0 0 sinyv v θ=  will be + 

4th quadrant launch −θ 
 0 0 cosxv v θ=  will be + 
 

0 0 sinyv v θ= will be − 

If it lands at the same height as it 
started (y = y0), then tup = tdown. 

There are two  t’s  for every  y.  The 
shorter  t  is for the upward trip.  The 
longer  t  is for the downward trip. 

Solve for maximum height two ways 
1. From ground up where vy = 0. 

( )2 2
0 02y yv v g y y= + −  

2. Or the easy way. Start at the top and 
pretend it is a falling body.  vx  
doesn’t matter since time is 
controlled by the  y-direction. And 
at the top  voy  is zero. However, this 
solves for half of the total flight. 

21
2

y gt=  Must double time! 

ax = 0 No  a  in the  x-direction 
 0x xv v=  
What is it doing at the end of the 

problem in the y-direction? 

yv±  

It is usually moving downward at 
the end of the problem. 
So  vy  is usually negative 

The final  v  must be resolved. 
 2 2

x yv v v= +  

If 0y y=  
 0y yv v= −  & 0v v=  

Projectile Motion Strategies 
1. Horizontal Launch: Since  v0y = 0  and  v0x = v0,  then use  21 2y gt=   and  

0 xx v t= . 

2. When time (t) or range (x) is given: Start with 
0 xx v t=  and then 2

0 0 1 2yy y v t gt= + + . 

3. No  x  and  no  t: Time is the key to falling body & projectile problems.  Two strategies are useful when time is missing. 

 1st 2
0 0 1 2yy y v t gt= + +  

2nd Quadratic Equation 

3rd 0 xx v t=  

1st ( )2 2
0 02y yv v g y y= + −  solve for   vy  which is usually negative. 

2nd 
0y yv v gt= +  use  -vy  from above to get  t. 

3rd 
0 xx v t=  use  t  from above to solve for range  x. 

Other Projectile Motion Facts 
Any two launch angles that add to 90o will arrive at the same landing site if fired on level ground.  Examples:  15o and 75o,  
30o and 60o,  and 40o and 50o.  Maximum range (maximum distance in the  x-direction) is achieved by launching at 45o (45o 
+ 45o = 90o).  Maximum altitude (maximum distance in the  y-direction) is achieved by firing straight up, at 90o. 

Circular Motion 
Frequency: How often a repeating event happens. Measured in revolutions per second. 
Period: The time for one revolution, 1T

f
= .  Time is in the numerator. 

Velocity: In uniform circular motion the magnitude (speed) of the object is not changing. However, the 
direction is constantly changing, and this means a change in velocity (a vector composed of both magnitude 
and direction). In circular motion one can describe the rate of motion as either a speed or as a tangential 

velocity 2 rv
T
π

= .  This velocity is an instantaneous velocity and it is directed tangent to the curve. 

Centripetal Acceleration: The object is continually turning toward the center of the circle, but never gets there due to its 

tangential velocity. This centripetal (center seeking) change in velocity, is a centripetal acceleration 
2
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