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3−19  RC Circuits 

Note: RC Circuits are needed for AP Physics C: physical science majors, calculus based. 

RC Circuits: Circuits containing both resistors 
and capacitors in series.  The circuit in Fig 19.1 is 
an RC circuit, composed of  emf  source  ε,  resistor  
R,  capacitor  C,  and switch  S.  The circuit in  
Fig 19.2 is a resistor circuit when the switch is in 
one position and a capacitor circuit when the switch 
is in the other position.  Do not start the math 
without looking closely at the diagrams.  We will 
focus on the RC circuit in Fig 19.1.  You already 
have the skills to solve the other circuit. 

Initial conditions: Before the switch is thrown, in Fig 19.1, there is no current in the circuit.  The battery produces an  
emf,  but the circuit is incomplete.  There is no electric field in the circuit and the charges lack a loop to follow.  There are no 
charges built up on the capacitor.  There is no resistance in the resistor. 

Instantaneous Conditions, Right When Switch is Thrown (time  t0): An electric field traveling at the speed 
of light extents from the positive terminal of the battery to the negative terminal.  The electric field accelerates charges 
(electrons moving opposite the field, from the negative terminal to the positive terminal.  They do not accelerate to the speed 
of light as they encounter resistance (much like a sky diver hits terminal velocity due to air resistance).  Initially there are no 
charges on the capacitor.  This means there are no charges repelling the first charges arriving at the capacitor.  So, the full 
current of these speeding charges move through the resistor.  Initially the circuit behaves as though the capacitor does not 
exit, as shown in Fig 19.3.  At this point the formula  V IR=   applies, if it is adapted to show  emf  and initial current  I0 (at 

time t0), as follows,  0I Rε = .  Then rearrange to solve for the initial current.  0I
R
ε

=  

A more formal approach uses Kirchhoff’s 2nd Rule: Potential around a closed loop adds to zero.  The potential 

of the battery minus the resistor and minus the capacitor must equal zero.,  0QV IR
C

− − = .  At this time there is no charge 

stored on the capacitor, so  Q = 0.  Substituting  0
0 0I R
C

ε ⎛ ⎞− − =⎜ ⎟
⎝ ⎠

,  and solving  0I
R
ε

=   leads to the same answer. 

Right now the potential Difference of the battery appears entirely across the resistor. 

At some time  t  later: Once charge begins to flow as a current, it is deposited on the capacitor.  The charges are loaded 
onto the capacitor very easily at first.  But, as the charges build up so does the electrostatic repulsion.  This process is a 
logarithmic process.  It begins quickly, with a lot of charge being deposited.  Then it becomes more and more difficult to 
fight the electrostatic repulsion and the charging gradually tapers off. 

The current in the circuit at some time  t  is solved using  t RC
tI e

R
ε −= .  The value  RC  has special significance.  It is 

called the time constant  τ,  where  RCτ = .  It is the time for the current to decrease to  1/e  of its initial value. 

Right now the potential Difference of the battery is split between the resistor and the capacitor. 

After a very long time: When a long time has passed the capacitor will become full.  As a result no current will flow in 

the circuit.  No current is flowing through the resistor, so it is as thought the resistor does not exist.  
QC
V

= .  Rearrange to 

solve for potential 
QV
C

= .  Using Kirchhoff’s 2nd Law would give the same result.  0QV IR
C

− − =   becomes  

( )0 0QR
C

ε − − =   which simplifies to  
QV
C

=  

Right now the potential Difference of the battery appears entirely across the  capacitor. 
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Capacitor Charge vs. Time Graph: Fig 19.3 shows the charge 
on the capacitor over time.  As discussed before the charge on the 
capacitor is zero initially.  When the current begins to flow the charges 
initially load onto the plates of the capacitor very quickly.  In the 
beginning there are few charges on the plates that would repel additional 
charges.  But, as the capacitor become more full the electric potential has 
to push charges against an ever increasing electrostatic repulsion.  It 
becomes harder and harder to load more charge.  Eventually the potential 
difference of the capacitor equals the potential difference of the battery.  
No more charges can load at this point.  The maximum charge on the 
capacitor at this point is Q Cε= .  It is shown as a dashed horizontal 

line marking the limit of charge on the graph.  When the time constant is 
reached the capacitor is 63.2% charged. 

Current vs. Time Graph: Fig 19.4 shows the current in the circuit 
over time.  Initially the current flows as though the capacitor is not present,  

0I
R
ε

= .  But, as the capacitor charges the current decreases over time, 

according to  t RC
tI e

R
ε −= .  Eventually when the capacitor reached a 

full charge the current stops entirely.  0 0I =  charge on the graph.  When 

the time constant is reached the current is at 36.8% of its initial value. 

Discharging a Capacitor: The battery is removed from the circuit, Fig 19.5.  The switch is 
thrown and the charge stored on one of the plates moves through the circuit and the resistor, 
toward the other plate.  This process continues until the potential difference, originally created by 
the capacitor, drops to zero.  Current flows very quickly at first, and then tapers to zero. 

The charge on the capacitor varies by t RC
tQ Qe−=  

The current in the circuit varies by t RC
t

QI e
RC

−= −   and  0
Q I

RC
=  
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